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Irrotational axisymmetric flow about a prolate spheroid in cylindrical 
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S U M M A R Y  
A solution to the problem of potential flow about a prolate spheroid placed axially symmetric in a circular duct has 
been derived. The solution is in the form of a distribution of vortex rings over the surface of the spheroid. The vortex 
strength is expressed in terms of an infinite series of Legendre polynomials and the analysis yields an infinite set of 
equations for determining the coefficients of this series. An expression for the velocity distribution on the surface of 
the spheroid as well as the longitudinal added mass coefficients of the spheroid are derived in terms of the coefficients 
of the Neumann series expansion of the vortex sheet strength. 

Numerical results are presented for various spheroids and different blockages. Also given is a comparison between 
the present method and few available approximate methods. 

1. Introduction 

The first step in determining the flow field about an axisymmetric body in cylindrical duct is 
the solution of the incompressible potential flow problem. The presence of the wall will alter 
the velocity and pressure distributions about the body as compared with the case where the 
flow field is externally unbounded. The so-called "blockage effect" has to be considered when 
potential flow and boundary layer calculations are performed for axisymmetrical models in 
water or wind tunnels. The same problem arises also in the design of nozzles and diffusers with 
an axisymmetrical core, in the design of turbomachinery elements, and in tube transportation 
related problems. 

Several methods are available for the calculation of the potential flow about bodies of revolu- 
tion placed axisymmetrically in a cylindrical duct. Levine's method [1] employs a series of 
Bessel functions which satisfy the Neumann boundary condition on the circular wall. The series 
given by Levine is essentially an expression for Green's function of a unit source placed on the 
axis of the tube. The Green's function may also be expressed in terms of an integral of Bessel 
functions as shown by Watson [2]. This method has been employed by Satija [3] for the 
computation of the velocity distribution about a body of revolution and by Goodman [4] in 
analysing the stability of a slender body in a circular tube. It may be mentioned that Satija's 
work yields only a first-order blockage correction. A procedure for determining a higher-order 
blockage correction has been proposed by Landweber and Gopalakrishnan [5] by solving a 
pair of integral equations; one for an axial doublet distribution and the second for the velocity 
distribution on the body surface. Mathew [6], for the velocity distribution on a body of 
revolution, used a vortex sheet to formulate integral equations of both the first and second kind 
although he employed only that of the second kind. Klein and Mathew [7] chose to represent 
both the duct and the body by a continuous distribution of ring vortices. The vortex strengths 
were then given by the solution of two coupled Fredholm integral equations of the second kind. 
Still another method for solving the potential flow for axisymmetric body-duct configuration, 
was that suggested by Kux and Wieghardt [8] which employed the Hess and Smith [-9] method 
and a distribution of sources over the circular wall. 

The final and major step, in all of the above mentioned methods, was the numerical solution 
of an integral equation for the axial source distribution, axial doublet distribution, vortex sheet 
or source ring. The potential flow about a prolate spheroid has been used to demonstrate the 
applicability of each one of these methods [3, 4, 5, 8]. 
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The numerical solution of the integral equation has to be performed with special care due to 
the sharp peaking of the kernel [5]. Any attempt to ignore this effect and use a quadrature 
formula of moderate order, may result in appreciable inaccuracy, as is readily detected from 
the plot of the numerical solution in [6]. Moreover, those methods which employ an integral 
equation of the first kind [3, 5, 6] may very well diverge for small blockages since it is known 
that a solution of an integral equation of the first kind does not exist in general [10]. 

In order to examine which method is superior as far as accuracy, applicability for small 
blockages and computer time are concerned, it is necessary to compare it against exact solution 
(if available). It is well known that the potential problem of incompressible unbounded flow 
past a spheroid bears an exact solution [11]. Is it possible to obtain an "exact" solution also 
for the case where the prolate spheroid is placed axisymmetrically in a circular tube? In addition 
to the eccentricity of the spheroid the solution will depend on the channel diameter. "Exact" 
should be interpreted as an exact solution in the least square sense. This is because an exact 
solution of an integral equation of the first kind does not exist in general and every solution 
which is obtained should be considered as an approximation in the Lebesque sense. 

Unfortunately an exact solution for the potential flow about a spheroid in a duct is not 
available. Separation of variables, which is the usual procedure for solving a potential boundary 
value problem for a spheroidal boundary, fails because the circular wall cannot be expressed 
in terms of one of the orthogonal spheroidal coordinates. Also the method of spheroidal 
harmonics which assumes a priori that the external potential may be expressed as a linear 
combination of an infinite set of exterior and interior spheroidal harmonics, is not applicable 
for the present case because of the condition at infinity. An attempt to solve this problem will 
be made here by expressing the solution of the integral equation in terms ofa  Neumann series 
whose coefficients are obtained by solving a set of linear equations. 

Since in the present case our interest is in the velocity distribution (or pressure distribution) 
about the spheroid. [3, 5, 6, 7, 8], it is more convenient to use Landweber's [12] formulation 
in terms of an integral equation for a vortex sheet, modified by Mathew [6] for a flow in a tube. 
The vortex sheet is expressed in terms of a Neumann series of Legendre polynomials and the 
Fredholm integral equation of the first kind is solved for the coefficients of this series. By 
employing the orthogonality properties of the Legendre polynomials it is possible to obtain an 
infinite set of linear equations for the coefficients of the series for the velocity distribution about 
the spheroid. These coefficients depend on the diameter of the duct and on the eccentricity of 
the spheroid. Asymptotic solutions for large blockages and expressions for the longitudinal 
added mass coefficients have been derived. Numerical comparison between the present method 
and the approximate methods given in [3, 5, 8] is also presented. 

2. Formulation of the problem 

Consider the incompressible and irrotational flow of an inviscid fluid about a prolate spheroid, 
placed axially in a circular tube. In a cylindrical coordinate system x and r, with an origin at 
the centroid of the spheroid, let x measure distance along the duct centerline in the direction 
of the ambient velocity, here denoted by U. In the same coordinate system, the equation of the 
impermeable cylindrical wall is given by r = a, where a denotes the radius of the tube. For the 
other solid boundary, i.e. the spheroid, it is convenient to use axisymmetric prolate spheroidal 
coordinates/z and ~ such that 

x = #~, r = (42-1)6(1-#z)~ ,  (1) 

where it is assumed that the two loci of the spheroid are located at x :  + 1. In the spheroidal 
coordinate system the equation of the spheroidal surface is given by ~ = ~o, where ~o is the inverse 
of the eccentricity of the spheroid. Since our interest, in the present paper, is to solve for the 
velocity (or the pressure distribution about the spheroid), it is convenient to formulate the 
problem in terms of vortex sheet distribution over the surface of the spheroid. The jump 
property of a vortex sheet implies that the velocity at the exterior part of the surface is equal 
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to the vortex sheet strength when the velocity at the interior part of the surface is chosen to be 
zero.  

In order to perform the integration along the x-axis, rather than on the body surface it is 
convenient to introduce a new variable, 7 (x) related to the velocity on the surface u (x) by the 
following definition : 

u(x) = y(x) cos 0,  (2) 

where 0 is the angle between the tangent to the body and the x-axis. For the spheroidal surface 
given by ( =  Go = const., equation (2) reads 

/ i f 2  __  ~ - 2 \ � 8 9  
X ~0 "~ 

An integral equation for the vortex sheet strength has been derived by Mathew [6]. Here we 
will give a different proof which appears to be much shorter and simpler than Mathew's 
derivation. 

The basic potential function for a unit sink placed at the origin on the axis of the circular duct 
which satisfies a Neumann boundary condition on the duct wall r =  a is [3] 

~bs(x , r) = (X2 nt-r2) -�89 -t- - -  Kl(ta ) cos(tx)dt (4) ~ ' 

where I, and K,  denote the modified Bessel functions of n th order of the first and second kind 
respectively [13]. 

According to the Biot-Savart law the velocity induced at points on the x-axis by an axisym- 
metric vortex ring of unit strength and radius r centered at the origin is 

1 r 2 _ r 0 (x  2 + r 2  )_~ (S) 
2 (x 2 + r2) ~ 2 Or " 

Equation (4) then suggests that the velocity induced by the same vortex ring at points along the 
x-axis, when it is placed in a circular duct of radius a, is 

1 r 2 2r[ ~176 11(tr) 
us(x, r) - ~2 (X2q-r2) k ~- J o  t K  1 (ta) ~ cos(tx)dx. (6) 

Consider now a continuous distribution of vortex rings with strength y(x) over the spheroidal 
surface. Employing Landweber's [12] method for the condition of zero velocity within the 
body yields the following integral equation: 

I1 (tr) 
2 U = tr (r 7 (r K1 (ta) I ~  cos { t (x -  r dt d~. (7) 

- o:0 

It may be mentioned that (7) is valid for bodies of revolution of arbitrary shape provided that 
the equation r(x) is prescribed. For the present case, 

rZ(x) = (~2-1)(1-x2/~2) ,  Ix] < ~0 (8) 

and we are concerned with the solution of the Fredholm integral equation of the first kind (7) 
for the unknown 7(x). 

The method of solution used is to assume that ~ (x) may be expressed in terms of a convergent 
Neumann series of Legendre polynomials [14] 

y({) = ~ A,P,(p), { = r  (9) 
r i m 0  

where the coefficients A, are functions of the eccentricity of the spheroid and the radius of the 
duct. In order to solve (9) for the unknowns, A,, let us denote the two integrals on the right-hand 
side of (7) by T 1 (x, ~o) and T 2 (x, ~0, a) respectively. 
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3. Treatment of single integral 

The kernel of the integral T 1 (x, ~o) may be written as 

R 3 -- R + (x-~)~xx \ . . /  ' (10) 

where 
R 2 = R 2 (x, 4) = ( x -  4) 2 +r2(~), (11) 

and r is defined by (8). 
In addition one has the following expansion [15] for the inverse of the distance between two 

points expressed as an infinite sum of spheroidal harmonics 

1 
i (2n+l)P.(x)P.(#)Q.(~o) (12) R r l=O 

where Q. denotes the nth order Legendre function of the second kind. Combining (10) and (12) 
then yields 

r 2 ( ~ )  
i (2n+l)P.(#)Q.(~o)[P.(x)+(x-#~o)P.(x)] (13) R 3 

n = 0  

where the dot denotes differentiation with respect to the argument. 
Substitution of (9) and (13) into (7) yields 

f;o = 7(~)r2(~) 
T,(x, ~o) = -~o R3 

f I14) 
Making use of the orthogonality properties of the Legendre polynomials, i.e. 

i '  {2/(2n+1) m=n P,,(#) P.(#)d# = ' (15) 
-* O, m e n  

and the following relation, [14], 

n n + l  
uP"(#) - 2 n + l  P.-I(#) + ~ P.+I(#), (16) 

equation (14) may be reduced to 

Tl(x,~o)=2~o i Q.(:o){[P.(x)+xP.(x)] A. 
n = 0  

n 
2 n -  1 ~~ A"- t 

n + l  1} 
2n+3 ~~ P"(x) A"+ " 

Define, for later use, a coefficient T'~ (~o) by 

T~(~o)= i l l  T l (x, ~o)Pm(x)dx . 

Introducing (17) in (18) yields 

m + l  .~o{ r'~(~o ) = 4 ~ ~oQ.,(~o)A.,+2~o Q,,+I(~o)A.+I 

-~oQ.(~o) 2 ~ - 1  A._~ + 2 n ~  A.+ 

(17) 

(18) 

(19) 
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since, [14], 

: P . -1  + > 0 .  

The following expansion is used for P.(x), [14], 

P.(x) = (2n- 1) P._l (x)+ (2n-  5) P.-3 (x)+ (2n-  9) P.-5 (x) +. . .  

hence, from (15) and (21) there results, 

f' P"(x) Pm(x)dx={ 2' n = m + 2 k + l  
-1 O, n C m + 2 k + l  

where k is an arbitrary positive integer. 
By substituting (15) and (22) into (19), we obtain 

m + l  
T'~ (~o) = 4 ~ ~oa~[ Q,.(~o)- ~o Qm+ l (~O) ] 

+4~~ k=l ~ A"+Zk[ Qm+2*(~~ 

(20) 

(21) 

(22) 

m + 2 k + l  
2m+4k+ 1 ~o Qm+ak+i (~o) 

m +  2k ] 
2m+4k+l  ~oQ,.+2,-1(~o) �9 (23) 

Finally, using recurrence formulae for the Legendre polynomials of the second kind [14], 
equation (23) may be simplified to read 

4 (o(~2-1)Q,.+l((o)A,.-4~o(~g-1) ~ Qm+zk(~o)A,.+2k (24) 
T]' (~~ = 2m+ 1 k=l " 

4. Treatment of double integral 

The double integral in (7), here denoted by Tz(x, ~o, a) may also be expressed as 

T2(x, ~o, a)= 2 ~o(~2_ 1) { A. t(1 2 i . 

- -u .=o -1 --# )~P'(#) Ii(ta) 
(25) 

/1 [t(~g- 1) ~ (1-  #2)~] cos {t(x-  #~0)} dtd#, 

where ~(r is replaced by its series expansion (9). 
Following Havelock [16], there exists the following relation : 

f l n~ (#)Ira [t(r 1)~(1- = 2(i)"-"n'f(r (26) #2)~] eUgOgd# 
- 1  

where P~ denotes the associated Legendre function defined by  

e.~(#) = (1--#2)m/2 amp.(#) dmpJ~o) (27) d # "  ; P~(ff~ d ~  

Here.in denotes the n th order spherical Bessel function [13], and i denotes the square root of 
minus one. 

Application of the recurrence formula 

(2n+ 1)P.(#) =/~.+, (#) -P ._ ,  (#), n >0 (28) 

and (27), results in 

(2n + 1) (1 _ #2)~- p.(#) i = P. +1 (#) - P.~-I (#), n > 0. (29) 

Introducing (29) into (26) yields 
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I 1_1 (1--#2)~ P.(l~)Ii[t(~-- 1)~(1 - #2)~] ei'~~ dp 

2(i)" [P.+t (~o)./.+i (t)+ H(n)PI_ i (~o).J.-1 (t)] (30) 
2n+ 1 

where H (n) denotes the Heaviside delta function, 

U ( n ) = {  0'1, n__<0n>0 (311 

After substituting (27) and (30), in (25) the latter may be integrated to give the following expres- 
sion: 

F f ~ Ka(ta ) T2(x,~o,a)= 4~o(~o2-1 ) ~ 2n-~l A. t x 

x [P,+i (~o)J.+ i(t) + H(n) P,- i  (~o)J,-1 (t)] dr, (32) 

where i" denotes the complex conjugate of i". 
As in (18) let us define 

f 1 T'~(~ o, a) = T2(x, ~o, a)Pm(x)dx . (33) 
- 1  

Hence, using the relation [13] 

I l l  P~(x)dt:'dx = 2i".j,,(t), (34) 

there results from (32), (33) and (34), that 

T~'(~ o, a )=  - 8-~o(~2" 1) ~ e~' A. I~ tjm(t) K l (ta) 
.=o 2n+ 1 __ I1(ta ) 

[P,+~ (~o).J.+ a (t)+ H(n)P,-x (~o).J.-1 (t)] dt, (35) 
where 

l 
- 1 ,  m + n = 2 k  

"~ 0 m+n = k k = 1, 3, 5, (36) 
1 ,  m + n  = 4k 

and s o = 1. 

5. Solution for the vortex sheet strength 

Application of the orthogonality properties of the Legendre polynomials to the integral 
equation (7) together with the definitions (18) and (33), results in the following relation" 

4Ub(m) = T'~ (~o)+ T~' (~o, a). (37) 

where 6 (m) is zero if m # 0 and one if m = 0. 
Substitution of (24) and (35) into (37) yields 

Q~m+~O)A2, " U 6 ( 2 m ) ~  ~ 2m - ; ~ )  + k: l  Qzm+2k(r176 + .=o De. (;o, a)A2., (38) 

where 
_ 2(-1)  '~+" f ~176 Ki(ta ) D2~(~o, 17/) (4n+l)~ 0o tj2~(t) I-~-~ [P2n+l(~o)J2n+l(t) + 

+ H (n) i02._1 (~o)J2.-1 (t)] dt. (39) 

T. Miloh 
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Only even integers should be considered for m in (37) since by symmetry Az,,+ 1 - 0  in (9). 
Equation (36) then implies that also n must be an even integer. 

An alternative form of (38) is 

C2. (~o, a)A2, 
Uf(2m) 2, _ (40) 

.=o r  1)' 
where 

2m 2m C2. (~o, a) = 02. (~o, a)+6(2n--2m) Qz,.+I (~o) + H(2n-2rn)Q2.(~o) (41) 
4m+ 1 

For the case of "zero blockage" (no walls) the right-hand side of (39) is identical zero (since 
a ~  ~ )  and the infinite set of linear equations (38) yields a rather simple solution 

Uf(m) 
Am = - ~o (~2 _ 1) Q1 (~o)" (42) 

Introducing (42) into (3) and (9), yields the well-known solution [11] for the velocity distribution 
on the surface of a prolate spheroid in an infinite stream 

u(x) _ 1 ( ~ - x 2 )  ~ (43) 

A second case for which the system (40) has a trivial solution is for a slender spheroid whose 
cross sectional area is very small. In the limit where this area is zero, the spheroid shrinks unto 
a section of the x-axis between the two loci. This is equivalent to the limit of ~0 approaching the 
value of unity. For the particular case discussed above the solution of (40) is A,, = U5 (m) as 
expected. That is to say that in the limit the spheroid does not disturb the flow. 

In most cases one is dealing with the case of "small blockage" (large values of a). For this 
case it is possible to replace the integral (39) by a series of tabulated functions. This can be done 
in the following manner. 

The product of two spherical Bessel function may be expressed as an infinite power series in 
the argument [14]. 

j,. (t)j. (t) = ~ _,.,._R k t m +" + 2k , (44) 
k=O 

where. 

B~,. 4 ( - 1 # 2 m + . + 2  ~ ( m + n + Z k + l ) ! ( m + k + l ) ! ( n + k + l ) !  
- k I (m + n + k + 1) !(2m + 2k + 2) !(2n + 2k + 2) !" (45) 

Using the following relation between the modified Bessel function of the first and second kind 
[13] 

Km +1 (t) lm(t ) + Km(t ) Ira+ 1 (t) = t -1 (46) 

It can be shown by integration by parts that 

I1 (ta) dt = I ~  dt = J ( 2 k ) .  (47) 

The function J has been computed numerically by Smythe [18] with an accuracy of eight 
decimal figures using Weddles integration rule. These functions are tabulated in [18-1 for 
forty-two sequential values of k. 

The integral (39) expressed in terms of the J function reads 

2 ( -  1) m+" I Bk . 
D2~'(~o, a) -- (4n+ 1)ha k=0 ~ (2k+ 1)a zk [ 2m'Zn+lP2n+ l(~~ 

+ H (n) Bkm, zn- l P2n_ l (~O) J (2m-k- 2n-i- 2k) ] . (48) 
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By examining the series (48) for large values of k it can be shown, based on the ratio convergence 
test ratio, that the above series converges uniformly for a > 1, since [18] 

J (2k + 2) kz (49) 
lim J ( Z k ) ~  " 
k~oo 

The convergence of (48) is quite good for a > 1 ; only a few terms are required to obtain the 
result with accuracy of several significant figures. For values of a such that a < 1 the coefficients 
D2~ ' should be determined from (39) rather than (48). The advantage of using (48) on (39) is in 
the saving of the numerical integration and in the possibility of controlling the error by a proper 
truncation of the infinite series. 

6. The longitudinal added mass coefficient 

The longitudinal added mass coefficient of a body of revolution placed axisymmetric in a 
tube, is a parameter of primary importance in the analysis of the aerodynamic stability of 
bodies moving in a tube. Goodman [4] has calculated the added mass coefficient of a prolate 
spheroid using slender body theory. From the solution of (40) it is also possible to derive an 
exact expression for the longitudinal added mass coefficient of the spheroid. 

The Taylor [19] added mass theorem yields an expression for the added mass coefficient of 
a Rankine body in terms of its image system which is assumed to be, in general, a combination 
of sources, sinks and doublets. This powerful theorem is not applicable for the present case 
since the body is generated by a distribution of vortex rings. However, following Lamb [11], 
a vortex ring is equivalent to a uniform distribution of doublets over the surface bounded by it. 
The axes of the doublets is taken to be normal to the surface everywhere and the density of the 
distribution is equal to the strength of the vortex divided by 4~. Hence, employing the Taylor 
added mass formula ~19] for normal doublets, the following expression for the longitudinal 
added mass coefficient of the spheroid, here denoted by 2, is obtained. 

S UV(l+2) = 1) (50) 

where V denotes the volume of the spheroid. Introducing (9) into (50) and using (15), yields 
the following simple form for the added mass coefficient 

1+2  = A o - � 8 9  z . (51) 

For the case of a spheroid in an infinite stream, combination of (42) and (51) yields the well known 
expression for the longitudinal added mass coefficient of a prolate spheroid in an unbounded 
stream parallel to its major axis: 

1 + 2 = - [~0(# 2 - 1 )  ~)t (~0)]-t (52) 

7. Numerical examples and discussions 

The infinite system of linear equations for the coefficients Am (40), was solved by using the 
method of reduction [20]. In this method the solution is found by solving a sequence of finite 
systems, each of which is obtained from the infinite set by discarding all equations and unknowns 
beyond a certain number N. According to Kantorovich and Krylov [20] the solution of the 
finite system will converge, under certain conditions, to the solution of the infinite system. It 
was rather difficult to show that the conditions for the convergence theorem are satisfied and 
therefore it was assumed that if the finite system has a solution it must converge to the solution 
of the infinite system. A numerical verification of the above assumption is obtained when the 
number N of equations kept is increased. The coefficients Am approach a limiting value. 

The number N was chosen so as to permit maximum error of 10 -6 between two successive 
approximations. Denote the numerical value of A,, obtained from the solution of N equations 
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TABLE 1 

The convergence of the coefficients A. versus N (a= l=  6b)* 

323 

N = 0  N = I  N = 2  N = 3  N = 4  

A 0 1.05752143 1.05738838 1.05739913 1.05739913 1.05739915 
--A 2 x 103 4.44841151 4.39213028 4.39520394 4.39510117 
A 4 x 104 5.20406031 5.14876887 5.15061879 
- A  6 x l0 s 3.72772389 3.70100377 
A 8 x 106 1.54243522 

A. 
n = O  

1.05752143 1.05961259 1.05979096 1.05980146 1.05980184 

Ao = 1.04518289 (l=6b, no duct) 
* 21 = Length of spheroid 

2b = Maximum diameter of spheroid 
2a = Diameter of duct. 

u(X)u ~l / 
5. 

b 
-~ = 0.95 

~ = 6.:53 

21:1 = DIAMETER OF CHANNEL 

2b  = MAXIMUM DIAMETER 
OF SPHEROID 

20 = LENGTH OF SPHEROID 

0.8 

0.6 

0.4 
0.2 

0.0 

' ' ' i 0.0 Q2 0.4 0.6 08  1.0 X/~  

Figure 1. Velocity distribution on the surface of a spheroid for different blockages. 
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324 T. Miloh 

by A~ ) and similarly, the value found by solving N +  1 equations by A(,. N+ 1). The error criterion 
used here was to choose N such that the following two conditions 

IA~N+I)-A~)[ < 10 -6 , (53) 

.~o A("U+')"(0) .~o A("m"(0)l 10-6 (54) 

are satisfied. 
Since A 1 > 1, the inequality (53) implies that the coefficients A,, are computed with accuracy 

of seven decimal figures. Similarly, (54) suggests that the velocity on the spheroid is computed 
with the same accuracy. 

For small and moderate blockage the rate of convergence of A~ ) to its limiting value was 
fast, i.e. only small values of N are needed to obtain this accuracy. The value of N is increasing 
with an increase of the blockage. A numerical example of the coefficients A~ ), obtained by 
solving (40) for different m and N, is given in Table 1. The spheroid selected for this example, is 

2.80 

U (X) 

U 
2.60 

2.40 

2.20 

2.00 

1.80 

1.60 

1.40 

1.20 

1.00 

0.80 

. . . . .  LANDWEBER 4 GOPALAKRISHNAN 

WlEGHARDT 4. KUX 

PRESENT SOLUTION 

2 0  = DIAMETER OF CHANNEL 

2 b  = MAXIMUM DIAMETER 
OF SPHEROID 

2~. = LENGTH OF SPHEROID 

b 5.:o.8 

0.00 0.20 0,40 0,60 0.80 1.00 1.20 
x/~ 

Figure 2. A comparison between the present solution for the velocity distribution and the solutions given in [5] and 
in [8]. 
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that used by Satija [3], having length-diameter ratio of 6 and the same value for the ratio of 
the diameters of duct and spheroid. 

The coefficients D~ in (39) are suited for computation by Laguerre quadrature formula. The 
Laguerre 15-point formula [13] was used. 

The procedure for calculating the velocity distribution on the surface of a spheroid is illus- 
trated for the spheroid used by Kux and Wieghardt 1-8] and by Landweber and Gopalakrishnan 
[5], with length-diameter ratio of 6.33. The system of equations (40) was solved for different 
blockages and the velocity distribution was computed from (3). The numerical results are 
plotted in Figure 1 and the values of the  coefficients A,, for different blockages are given in 
Table 2. Figure 2 is a comparison between the results presented in [5] and in 1-8] and the present 
solution for a ratio of channel diameter to spheroid diameter equal to 1.25. From this comparison 
it appears that Kux and Wieghardt's solution yields a better accuracy than Landweber and 
Kopalakrishnan's solution in the central portion of the body. The opposite statement is true 
for the region near the stagnation points where Landweber and Gopalakrishnan method seems 
to be the more accurate one. Some numerical difficulties arise when these two methods are 
used for blockages which are larger than 0.8. This is not the case in the present method. The 
solution was found to be convergent even for blockage of 0.95. For very small blockage the 
correction to the velocity distribution on the surface due to the presence of the walls is in- 
significant. For the moderate blockage of 0.4 the maximum correction for the unbounded case 
velocity distribution is less than 15 percent. This correction is rapidly increasing with further 

4.0 

3.0 

2Q = DIAMETER OF CHANNEL 

2b  = MAXIMUM DIAMETER 
OF SPHEROID 

20. = LENGTH OF SPHEROID 

= LONGITUDIAL ADDED MASS 
COEFFICIENT 

/ 
"-~-= 6.33 

2.0 

1.0 

0.0 i i = 

0.0 0.2 0.4 0.6 0.8 1.0 
b/o 

Figure 3. The longitudinal added mass coefficient of a spheroid versus the blockage of the channel. 
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increase of the blockage, reaching a value of 180 percent for blockage of 0.8 and 430 percent 
for blockage of 0.9. 

The longitudinal added mass coefficient as computed from (51) for the same spheroid is 
plotted in Figure 3 for different blockages. This coefficient is increasing exponentially with 
increasing the value of the blockage approaching the value of infinity as the blockage is ap- 
proaching unity. The numerical values of 1 +2  are approximately equal to the value of u(O)/U 
for the same blockage. This statement is exact in the case of zero blockage. 

As a concluding remark it should be mentioned that the present solution may also be applied 
to bodies with shapes close to a spheroid by defining an "equivalent spheroid", i.e. a spheroid 
having the same volume and the same maximum cross sectional area as the original body. 
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